Food from urban agriculture has carbon footprint 6 times larger than conventional produce, study shows

By Oliver Morrison

- Last updated on GMT

Image: University of Michigan researchers evaluate an urban garden in Detroit. Photo credit: Dave Brenner, University of Michigan.
Image: University of Michigan researchers evaluate an urban garden in Detroit. Photo credit: Dave Brenner, University of Michigan.
Most urban farms are decidedly low-tech such crops grown in soil on open-air plots. But owing to infrastructure, supplies such as fertiliser and irrigation water, they have a higher carbon footprint than conventionally grown produce, claims new research.

An international study led by the University of Michigan has found that fruits and vegetables grown in these urban farms and gardens have a carbon footprint that is, on average, six times greater than conventionally grown produce.

However, a few city-grown crops matched or outperformed conventional agriculture under certain conditions, the study revealed. For example, tomatoes grown in the soil of open-air urban plots had a lower carbon intensity than tomatoes grown in conventional greenhouses, while the emissions difference between conventional and urban agriculture vanished for air-freighted crops like asparagus.

"The exceptions revealed by our study suggest that urban agriculture practitioners can reduce their climate impacts by cultivating crops that are typically greenhouse-grown or air-freighted, in addition to making changes in site design and management," said study co-lead author Jason Hawes, a doctoral student at U-M's School for Environment and Sustainability.

"Urban agriculture offers a variety of social, nutritional and place-based environmental benefits, which make it an appealing feature of future sustainable cities. This work shines light on ways to ensure that urban agriculture benefits the climate, as well as the people and places it serves."

Urban agriculture, the practice of farming within the confines of a city, is becoming increasingly popular worldwide and is touted as a way to make cities and urban food systems more sustainable. By some estimates, between 20% and 30% of the global urban population engages in some form of urban agriculture.

Despite strong evidence of the social and nutritional benefits of urban agriculture, its carbon footprint remains understudied. Most previously published studies have focused on high-tech, energy-intensive forms of UA – such as vertical farms and rooftop greenhouses –even though the vast majority of urban farms are decidedly low-tech: crops grown in soil on open-air plots.

The new U-M-led study, published in the journal Nature Cities​, aimed to fill some of the knowledge gaps by comparing the carbon footprints of food produced at low-tech urban agriculture sites to conventional crops. It used data from 73 urban farms and gardens in five countries and is claims to be the largest published study to compare the carbon footprints of urban and conventional agriculture.

Three types of urban agriculture sites were analysed: urban farms (professionally managed and focused on food production), individual gardens (small plots managed by single gardeners) and collective gardens (communal spaces managed by groups of gardeners).

For each site, the researchers calculated the climate-altering greenhouse gas emissions associated with on-farm materials and activities over the lifetime of the farm. The emissions, expressed in kilograms of carbon dioxide equivalents per serving of food, were then compared to foods raised by conventional methods.

On average, food produced through urban agriculture emitted 0.42 kilograms of carbon dioxide equivalents per serving, six times higher than the 0.07 kg CO2​e per serving of conventionally grown produce.

"By assessing actual inputs and outputs on urban agriculture sites, we were able to assign climate change impacts to each serving of produce," said study co-lead author Benjamin Goldstein, assistant professor at U-M's School for Environment and Sustainability. "This dataset reveals that urban agriculture has higher carbon emissions per serving of fruit or vegetable than conventional agriculture – with a few exceptions."

Farmers and gardeners at urban agriculture sites in France, Germany, Poland, the United Kingdom and the United States were recruited as ‘citizen scientists’ and used daily diary entries to record inputs and harvests from their food-growing sites throughout the 2019 season.

Inputs to the urban agriculture sites fell into three main categories: infrastructure (such as the raised beds in which food is grown, or pathways between plots), supplies (including compost, fertiliser, weed-blocking fabric and gasoline for machinery), and irrigation water.

"Most of the climate impacts at urban farms are driven by the materials used to construct them: the infrastructure," Goldstein said. "These farms typically only operate for a few years or a decade, so the greenhouse gases used to produce those materials are not used effectively. Conventional agriculture, on the other hand, is very efficient and hard to compete with."

For example, conventional farms often grow a single crop with the help of pesticides and fertilisers, resulting in larger harvests and a reduced carbon footprint when compared to urban farms, he said.

Best practices identified

The researchers identified three best practices crucial to making low-tech urban agriculture more carbon-competitive with conventional agriculture:

  • Extend infrastructure lifetimes​. Extend the lifetime of UA materials and structures such as raised beds, composting infrastructure and sheds. A raised bed used for five years will have approximately four times the environmental impact, per serving of food, as a raised bed used for 20 years.
  • Use urban wastes as UA inputs​. Conserve carbon by engaging in "urban symbiosis," which includes giving a second life to used materials, such as construction debris and demolition waste, that are unsuitable for new construction but potentially useful for UA. The most well-known symbiotic relationship between cities and UA is composting. The category also includes using rainwater and recycled grey water for irrigation.
  • Generate high levels of social benefits. ​In a survey conducted for the study, UA farmers and gardeners overwhelmingly reported improved mental health, diet and social networks. While increasing these "nonfood outputs" of UA does not reduce its carbon footprint, "growing spaces which maximise social benefits can outcompete conventional agriculture when UA benefits are considered holistically," according to the study authors.

Reference: Comparing the carbon footprints of urban and conventional agriculture​ (DOI 10.1038/s44284-023-00023-3) 

Related news

Show more

Related products

show more

The Next Big Tech Boom? It’s on the Farm.

The Next Big Tech Boom? It’s on the Farm.

Content provided by ADM | 19-Sep-2024 | Insight Guide

Episode four of our Byte-Sized Revolution Trend Series features our new report, “The Next Big Tech Boom? It’s on the Farm.” Discover how technology-driven...

World Agri-Tech Innovation Summit in Dubai

World Agri-Tech Innovation Summit in Dubai

Content provided by Rethink Events Ltd | 11-Sep-2024 | Product Brochure

The World Agri-Tech Middle East, Africa, and South Asia Summit returns to Dubai on December 9-10, welcoming 400+ of the most influential leaders in agriculture...

World Agri-Tech Mexico City, Oct 29-30, 2024

World Agri-Tech Mexico City, Oct 29-30, 2024

Content provided by World Agri-Tech Innovation Summit, Mexico City, Oct 29-30, 2024 | 22-Aug-2024 | Product Brochure

The renowned World Agri-Tech Innovation Summit is coming to Mexico City on October 29-30, 2024.

Welcoming local and international stakeholders...

Related suppliers

Follow us

Products

View more

Webinars